If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2=52
We move all terms to the left:
k^2-(52)=0
a = 1; b = 0; c = -52;
Δ = b2-4ac
Δ = 02-4·1·(-52)
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{13}}{2*1}=\frac{0-4\sqrt{13}}{2} =-\frac{4\sqrt{13}}{2} =-2\sqrt{13} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{13}}{2*1}=\frac{0+4\sqrt{13}}{2} =\frac{4\sqrt{13}}{2} =2\sqrt{13} $
| 4x+4=14+2x | | -13+8=-5(x+8) | | h/4+6=-5 | | 5w^2=27w=10 | | (20-32)1.8=c | | 4(10+5x)=-80 | | 12=1+3/4n | | 2.5=3*x | | −2(2x+1)+3x−3=−7 | | 10111.99=7750(1+x)9 | | 3(5x4)=8x+2 | | 16+5=-3(9x-7 | | 3(m-5)=6(m+4) | | 3(4p-8)+7=19 | | 0.04(k+10)+0.06(k-30)=0.1k-1.4 | | x=3+8/9 | | -3(3-4x)=51 | | 5x+2(3x-7)=-20+11x-6 | | 3(4p-8+7=19 | | 125-100m+38,600=40,600-175m | | -11+1=-2(x+8) | | x-3/10=7/4 | | 0.45n=2.25 | | 15. 0.45n=2.25 | | 5(2x+9)=-34+39 | | 3u=2u+20 | | 8x/2=20 | | 12x6=24x3 | | 5x+19+3x+21=90 | | 9x-25=10 | | 2(x-2)/3=2(x+8)/13 | | 2x2−4x−2=0 |